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Abstract--A three-dimensional drive simulator for the

prediction of LMSS multipath propagation has been developed. It

is based on simple physical and geometrical rules and can be used

to evaluate effects of scatterer numbers and positions, receiving

antenna pattern, and satellite frequency and position. It is

shown that scatterers close to the receiver have the most effect

and that directive antennas suppress multipath interference.

. Introduction

Land mobile satellite service (LMSS) is a new

communications system which exploits the strengths of satellites:

continental coverage and mobility. It will enable telephone and

data service to vehicles traveling throughout the US, especially

in rural areas, away from mayor traffic arteries, where

terrestrial cellular service may never be established. The

design of this system is currently under way and the selection of

optimal system parameters, such as antenna pattern, modulation,

and coding, requires the knowledge of propagation impairments.

At L band, the intended frequency of LMSS, the two major

propagation effects are: (i) fading caused by obstructions in the

line-of-sight path between the vehicle and the satellite, and (2)

fading caused by the interference of the direct wave with
reflections from scatterers all around the vehicle. Several

approaches have been followed to quantify propagation effects.

Initially, hard- [Davarian, 1987] and software [Divsalar, 1985]

simulators were developed based on statistical assumptions of

shadowed multipath propagation derived from terrestrial mobile

propagation (Ricean and/or Rayleigh multipath, log-normal

shadowing). Subsequently, many field measurements of propagation

effects were made [see References in Vogel, Goldhirsh, and Hase,

1989], and their results were used to develop empirical [Vogel,

Goldhirsh, and Hase, 1989] and semi-empirical [Barts et al, 1987]

propagation models. Recently, measurement results have also been

used for refining simulators [Berner, 1989].

Although most existing simulators can estimate system

performance such as bit error rate as a function of a particular

coding and modulation scheme, they are incapable of predicting

effects of the distance to and density of the scatterers, the

channel bandwidth, or the vehicle antenna pattern. An exception

to this is a simulation by Amoroso and Jones [1988], in which a
random distribution of I000 scatterers was assumed to exist in

the plane of the vehicle's path. However, the drawbacks of this
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study were its two-dimensional approach, which eliminated
realistic elevation angle and antenna effects, and the avoidance
of any scatterers in proximity to the vehicle, which in field
measurements have been shown to dominate the signal variations in
the absence of shadowing. The simulator described here remedies
these deficiencies. It is an extension of a single scatterer
multipath drive simulator [Vogel and Hong, 1988], which was based
on simple physical and geometric considerations. The new version
allows a vehicle to be driven through a region with many randomly
distributed, point-source multipath scatterers. The output of
the drive simulator are time series of signal amplitude and phase
as well as Doppler spectra, all for user-specified conditions.
These outputs, in turn, can be used to calculate system
performance parameters. The simulator does not consider
shadowing, and this limits its application to low fade margin
systems, where multipath fading effects determine system
performance most of the time. This is because shadowing tends to
completely disrupt transmissions.

2. Model Derivation

The derivations are based on the single scatterer geometry
shown in Figure i, consisting of a satellite transmitting with
wavelength w from given azimuth and elevation directions (et,_t)
relative to a vehicle moving with speed v along the x-axls, an
arbitrary vehicle antenna pattern (directivity D(e,#)) , and a
point-source scatterer s with a given scattering cross section a
and an arbitrary location. The resultant electrical field
strength at the receiver is proportional to [Vogel and Hong,
1988]:

_ D(es,_s) 2_

Er(t ) _ 1 + * exp[-j -- [p-a(t)+R(t)]] (i)

24qR (t) D(et,_t) w

where p-a(t) is the distance between the plane wave through

the origin and the scatterer and R(t) is the distance between the

scatterer and the vehicle antenna. The variable part of the sum

is the contribution of the single scatterer. In order to obtain

the total field at the receiver due to many scatterers, the
vector sum of the constant incident field and all the scattered

fields e is formed and the relative total power and phase are

calculated from:

Powerto t = [(I + Zereal )2 + (Zeimag)2] I/2 (2)

Zeimag

Phaseto t = arctan[ ] (3)

1 + Zereal

where the summation includes the real or imaginary parts of

each scatterer's response e to the incident wave.
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The power spectral density of the received wave is
calculated by accumulating values of instantaneous power and
Doppler frequency at i000 samples per second, where the
instantaneous frequency is the time derivative of the phase of
the combined scattered waves, excluding the direct wave:

6(Phasescat ) 6 Zeimag

fd = - arctan[ ] (4)

6t 6t Zereal

All calculations were performed for time durations of 1

second, corresponding to a driving distance of about 25 m at a

speed of 55 mph.

• Model Validation

The operation of the model was validated by comparing the

predicted power and phase assuming a single scatterer to the

results from measurements, both with similar parameters. One

example of this is shown in Figure 2, which depicts the situation

in which the satellite illuminates the vehicle from 7 o'clock

with an elevation angle of 35 ° at a frequency of 1547 MHz. The

speed is 54 mph, and a scatterer (0 = 32 m')is located 3 m to the

right and 4 m above the vehicle antenna• The measured and

calculated power time series are quite similar• Furthermore,

parameters such as the position of the satellite or the scatterer

were varied systematically, and the results changed consistently

with expectations and measurements, where available.

Another test consisted of comparing the simulated power

spectral density to the theoretically expected one [Clarke,

1968]. Figure 3 demonstrates that the simulation model produces

the correct Doppler spectrum, centered on the received carrier

frequency. The shape shows the typical signature of mobile

propagation, a sharply bandlimited spectrum with maximum power at

the edges. The frequency deviation of the scattered wave

(±120 Hz) agrees with the value expected from the geometry.

4. Results

4.1 Comparison with 2D simulation

The two-dimensional simulation by Amoroso and Jones

considered I000 scatterers randomly distributed in an annular

region with an outer radius of 2000 m and an inner radius of

400 m, corresponding to an average scatterer density of 12,000

m2/scatterer. Their simulated fading record of unmodulated

carrier power for an omni-directional antenna, reproduced in

Figure 4, shows peak-to-peak variations of over 20 dB. The

corresponding output of the 3D simulator, for a drooping dipole

antenna and with the height of the scatterers randomly

distributed between 0 and i0 m, is shown in Figure 5. The range

of the received power is less than 1.5 dB and this is in
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agreement with measurements made in locations where no scatterers
are in the vicinity of the vehicle.

4.2 Dependence of signal variations on clearance

Similar cases to the one above, except for an outer radius
of 500 m and the much higher average scatterer density of 625
m'/scatterer, were run with inner clearance radii from 30 to
400 m. The result, depicted in Figure 6, demonstrates that
multipath phenomena for LMSS are significant only if the
scatterers are located closely to the vehicle. The standard
deviation of the logarithmic amplitude decreases monotonically
with increasing inner clearance, from 0.22 dB to 0.07 dB.

4.3 Antenna pattern effects

In order to demonstrate the efficiency of high-gain
antennas in reducing multipath interference, several calculations
were performed with an antenna having 80" half power beamwidth in
both azimuth and elevation planes. Tests with a single scatterer
located either in the direction to the satellite or opposite to
it resulted for the drooping dipole antenna in fades >I0 dB
(both cases) and for the high-gain antenna in fades >i0 dB and
<i dB, respectively. The suppression of the multipath
interference by the antenna patterns remains in effect as long as
the antenna is pointed at the satellite.

In an environment with many scatterers, the reduction of
the fluctuations is not as extreme, but still significant. For
the case of 500 scatterers within a i0 to 300 m annulus, the
peak-to-peak fluctuations were reduced by a factor of 4.5, from
7.2 dB to 1.6 dB.

5. Conclusion

A three-dimensional drive simulator has been used to
calculate signal level time series for LMSS. The simulator
allows the realistic inclusion of many scatterers in random
positions as well as arbitrary antenna patterns. The major
conclusions reached from this work are:

(i) Two-dimensional simulations overestimate multipath,
because the elevation angle selectivity of the receiving antenna
has to be neglected. Therefore they cannot be used to predict
either amplitude, phase, or bandwidth effects realistically.
(2) The three-dimensional simulator demonstrates that only
scatterers in the immediate vicinity of the receiver matter. As
a consequence, the delay spread spectrum is narrow and has no
detrimental impact on contemplated systems with channel
bandwidths of 5 kHz. (3) Time-series produced with this
simulator will give more realistic inputs to systems which
analyze bit error performance than those based on statistical
assumptions only.
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Figure I. Drive simulator

geometry

Figure 2. A single scatterer

simulation output
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Figure 3. Doppler spectrum
for one scatterer

Figure 4. Amoroso's simulated

fading record
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Figure 5. 3D simulation of
i000 scatterers

Figure 6. Power STDV as a
function of inner

clearance radius
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